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GRAVITATIONAL FIELD OF THE SCALARLY CHARGED MASS
IN THE LOBACHEVSKI SPACE

R.A.Asanov

A variant of the Chernikov gravity theory with two connections and one metric, in which
the background connection describes the Lobachevski space, is treated. A localized source of -
static, space spherically symmetric gravitational and massless scalar fields is present. An exact
external solution of the problem is given. The result is yalid for the Rosen bimetric general
relativity. The transition to the Einstein theory exists when the Lobachevski constant k tends
to infinity.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

I'paBHTaLHOHHOE MOJIe CKaMAPHOro 3apsaaa
Ha doHe npocrpancrea JloGaueBckoro

P.A.Acanos

B Bapuante Teopuu YepHHKOBA C BYMS CBASHOCTAMH, B KOTOPOM (DOHOBas CBA3HOCTb 3a-
zaetcs no JlobauesckoMy, HaliieHO TOYHOE BHEILHEE PEIICHUE 3a1a%H O TPABHTALIHOHHOM Nojie
JIOKQTH30BaHHOTO HCTOUHHKA CTATHCTHUYECKHX ChepHuECKH-CUMMETPHYHbIX 5e3MaccoBbIX CKa-
JIAPHOTO M rpasuTauuoHHoro nonedl. Ilpu crpemsiennn xoucrantel JloGayeBckoro k — oo
pelieHHe NEPEXOINT B PELUCHHUE TOH Xe 3aauM B TeOpPHH DitHIuTejiHa. PesyabraT cnpasenaus
L1158 BapHaHTa OuMeTpHUecKoi obuieil TeOpHH OTHOCHTENLHOCTH Po3eHa.

Pabora sbinonueHa B JlaGoparopuu Teopetnyeckoit dusuku uM. H.H.Boromo6osa OUSIH.

Some years ago Chernikov [1] has suggested a generalization of the Einstein theory,
the theory with two connections but one metric. The main aim of this theory was to obtain
a covariant generalization of the Einstein gravitational energy-momentum pseudotensor. For
this aim it occurs necessary and sufficient to introduce the second (background) connection.
A more early bimetric approach by Rosen [2] for the same aim proved, in this way, to be
sufficient. Both theories have the general relativity as a limiting case, and this fact is to be
taken into account if one appeals to an experiment.

The following variant [1] of the Chernikov theory is considered. First, when the

gravitation is absent (x=0), the field connection F;‘v is put equal to the background

A
connection l";‘v . Second, under the same condition, the static metric in the spherical space
coordinates is

2
ds? = (cdn? - dr* - (k sinh %] dQ?, dQ* = de” + sin® 04¢%, (1)
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so its spatial part describes the Lobachevski space (k is the Lobachevski constant) that tends
to Euclidean one when k — oo. Third, the background connection chosen is Cristoffelian and
defined by the metric (1) A consequence of the latter is the symmetry of the background

connection Ricci tensor R pov =Ry Rvp and field equations became

A Smc -1 _ . po _
R (TI-W 2 guVT)’ T_g Tpc 4 u" 0? 11 2y 39 (2)

X is the Newton gravity constant, TLW is the Einstein material tensor. Note that these equa-

tions coincide with equations of the Rosen bimetric general relativity with the background
metric (1). In both theories, in analogy with general relativity (GR), the equation

V T =0 holds (V is the covariant derivative with respect to the field connection). Now,

the consequence of it in the GR limit will be the De Donder (coordinate) harmonicity
condition. For the static spherically symmetric space the equations (2) have been solved by
Chernikov [1] when a concentrated massive source of the gravitational field is present. The
interval has the form

ds* = V¥(r)(cdt)? - F Xndr® - H(rdQ, A3)

and the exact external (i.e., T}w =0, r+ 0) solution is of the form
A

smh

A
vin=r2n=p2—% . p- cxp[ 5] ()
r+r’ k

sinh——
k
r+;‘\ k 2 m
H(r) = Pk sinh y 0 7S h7=:{, (5)

here m is the mass of the system. When k — o it turns into the Schwarzschild solution
written in the spherical space coordinates that are conventionally related to the rectilinear

harmonic coordinates x‘ [3] , and r — o= 5" The relation is ordinary: x l'=rsin@cos 0,
c

x2=rsir3 0 sin ¢, x> =rcos .
Now we consider an analogous static problem when a localized source of the
gravitational and massless scalar fields is present. For the scalar field potential U we assume

the simplest generalization of the Schrédinger (Klein-Gordon-Fock) equation that outside
the source gives

- " H V - *
VoV U=-F Z[U (lnT)U:l-—O, (6)
the prime denotes d /dr. The static solution of it is
U=-G—— )]

H?v
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that in the limit x — 0 should give U’—)-G/r2, here G is the scalar constant. The
corresponding scalar field material tensor is

(sc) _ _ 1 - 1 c
Tuv =~ (VuUVVU 3 ngGUV UJ. _ (8)

By using (7) and (8), the field equations (2) give

2[’
(H VJ=0’

k F )
(ﬁ%) —FVcosh%=O, (10)

2 2

o H_ o (VY __xG* _F
H —;C—Z'—H Voo IRV E (11

Before solving this system, let us recall that the searched solution in the limit k — oo
should turn into the solution of the same problem in GR in harmonic coordinates (more

precisely, in spherical space coordinates, related to the rectilinear ones). I know this
solution, it is as follows [4]:

r+ao

v2=r’-=(’—‘~§‘-f, Hi=(r+&)' *Pr-a' P,

G, yr=0y . ., G
n| +&|, ie. U = g (12)

~ 1 \/"2——2——2- Km xm
o=—NK'm"+xkG" =——, B= .
c? Bc? P Vim® + kG2

Here we have explicitly introduced, into parameters, in distinction from the original, the
mass m of the system and the scalar constant G defined by (7). The latter is not so
indifferent how it could seem. This circumstance becomes clear, for instance, if we compare
the solution (12) with the solution of the Nordstrém-Reissner problem for electric charge
in harmonic coordinates [S] and when some limiting cases (x, m, G — 0) are considered.
Let us be convinced that (12) has been really expressed in harmonic coordinates as the
authors do not indicate this fact. It is sufficient for this to use the consequence for space
coordinates of the De Donder harmonicity condition ([6], Eq.(57.08)) (the rime coordinate

is obviously harmonic)
| d(H
FVdr[ F J‘2r (13)
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that is obviously fulfilled. Now let us throw a glance at (4), (5) and at (12) and try to
simply guess the solution in the form

sinh% _
Viz=F2=p—2 —= | P-zexp(—%),
sinh——
k
A\ +B 7N\ -B
H2=P2k2(sinh%) (sinhrkr) , (14)

G(..r=7Y'r .. r+7Y!
U’——kz(smh k ) (smh J,

where 7 is the integration constant. So, we are only left to define this parameter. From
Eq.(11) we have
2 ~ 2 2
k:sinhz[% ):“2”‘?:“0— (15)
Our solution (14), (15), when G — 0, tends to the Chernikov solution (4), (5), but differs
from it in the essence of singularity when r=7, in accordance with the property of GR
solution (12) [4].
The question of uniqueness of (14), (15) remains still open both by virtue of the
condition FV=1 used and other possible reasons similar to those in general relativity [7].
I express my gratitude to Professors N.A.Chernikov, V.N.Pervushin and participants of
their seminar for well-disposed discussions and support.
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